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Numerical dissipation of upwind schemes in lowMach flow
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SUMMARY

This paper presents a modified Roe scheme for the simulation of multicomponent compressible flows with
low Mach features. This modification reduces the excess dissipation of kinetic energy in Godunov-type
methods at low Mach. The modification is shown to work effectively to Ma=0.0002 using a single-mode
Kelvin–Helmholtz instability as a test case, and reproduces the correct Ma2 incompressible pressure
scaling. Computational expense is negligible. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

It is quite common to use Godunov-type upwind methods for simulation of flows with both
compressible and incompressible nature, or where the monotonicity of certain properties are
required. An example of this is the Richtmyer–Meshkov instability, where a shock wave passes
through a perturbed interface, generating a turbulent mixing layer. Once the shock wave has
passed, the mixing layer develops in a largely incompressible manner. It is well known that upwind
schemes are excessively dissipative at low Mach number; however, the mechanism for this is not
widely understood. A recent analysis [1] shows that the increase in entropy is approximately equal
to the irreversible dissipation of kinetic energy at low Mach. It also shows that the leading order
increase of entropy in Godunov-type methods is due to numerical dissipation within the momentum
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equations, which can be written as

T�S=�num= (1−C)

4�x
a�u2+·· · (1)

where T , u and a are the temperature, velocity normal to the cell interface and speed of sound,
respectively. �x is the length of the computational cell, C the Courant–Friedrich–Levy (CFL)
number, �S the change in entropy. �num is the numerical dissipation of kinetic energy. It can be
seen that the dissipation rate becomes infinite as Ma→0 (equivalently as a→∞). This paper
derives a new Roe scheme for the multicomponent equation set of Wang et al. [2] and proposes
a modification of the numerical dissipation in the momentum equations which corrects the Mach
number dependence of the numerical dissipation. The performance of this scheme is illustrated
via a simple single-mode Kelvin–Helmholtz (KH) test case.

2. GOVERNING EQUATIONS AND NUMERICAL SCHEME

This paper concerns the low Mach performance of compressible, multicomponent schemes. The
governing equations chosen are the Euler equations plus two additional equations for the multi-
component model. The three-dimensional compressible Euler equations for a Cartesian co-ordinate
system can be written in conservative variables as

�U
�t

+ �E
�x

+ �F
�y

+ �G
�z

=0 (2)

where

U=[�, �u, �v, �w, e]T, E=[�u, �u2+ p, �uv, �uw, (e+ p)u]T
F=[�v, �uv, �v2+ p, �vw, (e+ p)v]T, G=[�w, �uw, �vw, �w2+ p, (e+ p)w]T

e=�i+0.5�q2

where �, i , u, v, w are the density, internal energy and Cartesian velocity components, respectively.
The system of equations is completed with the specification of an ideal gas equation of state,
p=�i(�−1). The multi-component model employed is that proposed by Wang et al. [2], which is
based on the conservation of total enthalpy within the fluid mixture and consists of tracking two
additional equations
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=0 (4)

where M is the molecular mass of the mixture, and the variable �=�/(�−1) for a perfect gas.
A new Roe scheme has been derived for this set of governing equations, solved in a direction-split
form. The flux for the Roe scheme can be written as

Fi+1/2= 1

2
(FL +FR)− 1

2

∑
i=1,7

�i |�i |Ki (5)
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where the eigenvalues are

�1=�2=�3=�4=�5=u, �6=u−a, �7=u+a (6)

and the speed of sound a2=(H− 1
2V

2)/(�−1). With some algebraic manipulation the eigenvectors
can be cast into the following form:

K 1=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

0

�

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, K 2=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

−a2(�−1)M/�

−1

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, K 3=

⎡
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1

u

v

w
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0

0

⎤
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, K 4=
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0

0

1

0

v

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7)

K 5=
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, K 6=
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, K 7=
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(8)

The wave strengths, �i , required for the Roe scheme are given by

�1= �u6
�

− 2

M
�A, �2=��u7, �3=−M�u7+�u1−2�A, �4=�u3−v�u1

�5=�u4−w�u1, �6=M�u7/2−(�u2−u�u1)/2a+�A

�7=�6+(�u2−u�u1)/a

�A= �u5−u�u2−v�u3−w�u4+ 1
2 V

2�u1
2a2(�−1)

, �u7=�u7− 1

�
�u6 (9)

Following the analysis by Guillard and Viozat [3] the asymptotic behaviour of dissipation in
the Roe flux can be determined. This is achieved by substituting

� = �ref(�0+Ma2�2+·· ·), u=aref(0+Mau1+·· ·)
v = aref(0+Mav1+·· ·), w=aref(0+Maw1+·· ·)
p = �refa

2
ref(p0+Ma2 p2+·· ·)

(10)
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into Equation (5), where Ma is the reference Mach number. Next all terms (for all equations) in
the computation of the Roe flux are expanded to leading order in Mach. There is only one leading
order term at low Mach, giving

(�u2+ p)i+1/2≈ 1
2 ((�u

2+ p)L +(�u2+ p)R)+ 1
4Ma�refa

2
refa0(�(�0u1)−u1�(�0)) (11)

This single term is the only term of order Mach, and arises because �6=−�7 and, K 6
2 =

−K 7
2 , where (·)2 indicates the second row of the eigenvector. As expected, this result is iden-

tical to that given in the analysis of the Euler equations under Godunov form [4] (noting that
�(�0u1)−u1�(�0)=�0�(u1)). The next terms in the expansion are constant with Mach; hence,
these are not the source of increased dissipation in incompressible flows and are neglected
here. Computing the dissipation of kinetic energy due to this term gives the leading order term
shown in Equation (1). As Ma→0 (aref→∞) then the Roe scheme gives infinite dissipation.
To rectify this, one can modify the second row of the eigenvectors K 6

2 and K 7
2 by a factor

of Mach in low Mach regions. In this paper the sixth and seventh eigenvectors are modified
as

K 6
2 =u−a→u−�a, K 7

2 =u+a→u+�a (12)

Here, �=min(10Ma,1), such that the original Roe scheme is recovered for interfaces where
Ma>0.1. This makes the leading order dissipation tend to a constant value as Mach tends to
zero. If the new flux Jacobian is computed using the new set of eigenvectors it is seen that this
modification changes only the u-momentum flux from �u2+ p to �u2+�p. The modification
could be viewed as a change in the governing equations that are being solved, which is not
desirable. However, the standard fluxes are dominated by unphysical viscous dissipation at low
Mach, and are hence also not solving the Euler equations—but the Euler equations plus a large
viscous term. The contribution from the Roe scheme can be understood as an additional term
required only to stabilize the central difference flux. Hence, the form of this stabilization does
not necessarily require a physical basis, but it must not dominate the flow physics (as happens
with the standard flux at low Mach). This modification also allows good stability according to
the standard CFL condition, as opposed to standard preconditioned methods where stability in
explicit time stepping is prohibitive [5], thus can be used where the time stepping is not constrained
by the low Mach portion of the flow. In addition, it preserves exactly a stationary material
interface.

3. NUMERICAL TEST CASES

The effective resolution of the modified Roe scheme is now tested in the simulation of a single-
mode KH instability. The above method is implemented in conjuction with third-order accurate
Runge–Kutta time stepping [6], and with fifth-order (in one dimension) MUSCL reconstruction
[7]. The computational domain is square and spans [−0.5,−0.5] to [0.5,0.5] and is discretized
with 16 cells in each direction. The initial conditions consist of a perturbed shear layer, where the
flow is initially parallel, but for a small perturbation velocity which triggers the development of a
KH vortex. The initial perturbation is written in the form of the divergence of a vector potential
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(a) (b) (c)

(d) (e) (f )

Figure 1. Time development of the single-mode KH instability using the standard Roe scheme. Nine
contours of volume fraction from 0.1 to 0.9: (a) t=0, Ma=0.2; (b) t=1, Ma=0.2; (c) t=2, Ma=0.2;

(d) t=3, Ma=0.2; (e) t=3, Ma=0.02; and (f) t=3, Ma=0.002.

Az so that the flow field is approximately solenoidal [8]. In summary,

v = −�V/2− �Az

�x
, u= �Az

�y
for x<0

v = �V/2+ �Az

�x
, u= �Az

�y
for x>0

Az = V0
k
cos(ky)exp−k|x |, V0=0.1�V, �V =1

(13)

where �V is the difference in mean flow velocity V across the mixing layer. The Mach number,
defined by �V/a, is adjusted by changing the pressure. Density is fixed at �=1, and �= 5

3 . The
coarse resolution is deliberately chosen to highlight the scheme’s ability to capture what would
be a high wavenumber perturbation on a larger grid. It also allows easy demonstration of the low
Mach behaviour of the dissipation of kinetic energy.
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(a) (b) (c) (d)

Figure 2. Nine contours of volume fraction from 0.1 to 0.9 at t=3 for the modified scheme: (a) Ma=0.2;
(b) Ma=0.02; (c) Ma=0.002; and (d) Ma=0.0002.

Table I. Scaling of the maximum pressure and density
fluctuations with Mach at t=3.

Mach (Ma) �pmax/(pMa2) ��max/(�Ma2)

0.2 0.683 0.525
0.02 0.633 0.575
0.002 0.650 0.35
0.0002 0.633 12.5

The development of the instability when using the standard Roe scheme atMa=0.2 is illustrated
in Figure 1(a)–(d). The initially small perturbation is absolutely unstable and forms the characteristic
KH vortex. Contours of volume fraction are also shown in Figure 1(e) and (f) for Ma=0.02 and
0.002, where excessive dissipation prevents the growth of the instability. Figure 2 shows volume
fraction contours for the modified scheme at the final time step, where the modified dissipation
allows the development of a near Mach-independent structure.

An additional issue with low Mach Godunov-type simulations is that the numerical dissipation
causes anomalous scaling of the pressure with Mach number [3]. Table I shows the variation of
pressure and density differences with respect to Mach. The pressure variations follow the correct
Ma2 scaling; however, the density variations follow that scaling only to Ma≈0.002, below which
there is a departure from the expected behaviour. It is believed that this is due to the problem
of ‘cancellation’ errors. Sesterhenn et al. [9] demonstrated that this is a potential issue even at
Ma≈0.02.

4. CONCLUSIONS

This paper has presented a new Roe scheme to solve the multicomponent equations of Wang
et al. [2] and proposed a modification to this scheme for low Mach flows. This removes the
leading order Mach-dependent dissipation and is demonstrated to provide consistent results at Mach
numbers as low as 10−4. It also shows correct Ma2 scaling of pressure fluctuations; however, the
density fluctuations deviate from this below Ma≈0.002. This is believed to be due to cancellation
errors.
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